Chem. Ber. 103, 2961–2971 (1970)

Achim Müller, Ekkehard Diemann und V. V. Krishna Rao

Übergangsmetallchalkogenverbindungen

Darstellung, Eigenschaften und röntgenographische Untersuchung von Tetrathioperrhenaten Schwingungs- und Elektronenspektrum sowie Normalkoordinatenanalyse des ReS₄-Ions

Aus dem Anorganisch-Chemischen Institut der Universität Göttingen

(Eingegangen am 5. Mai 1970)

Darstellung und Eigenschaften von Tetrathioperrhenaten $M^{I}ReS_{4}$ $(M^{I} = (C_{6}H_{5})_{4}As, (C_{6}H_{5})_{4}P, (CH_{3})_{4}N)$ werden beschrieben. Die gemessenen Schwingungs- und Elektronenspektren werden gedeutet und im Zusammenhang mit den Bindungsverhältnissen diskutiert. Für das ReS_{4} -Ion wird eine Normalkoordinatenanalyse durchgeführt. Die röntgenographische Untersuchung ergab, daß das Tetraphenylarsoniumsalz (a = 13.14 Å, c = 7.11 Å) und das Tetraphenylphosphoniumsalz (a = 12.94 Å, c = 7.20 Å) tetragonal mit Z = 2 wahrscheinlich in der Raumgruppe S_{4}^{2} -I 4 kristallisieren.

Transition Metall Chalkogen Compounds

Preparation, Properties and X-Ray Study of Tetrathioperrhenates Vibrational and Electronic Spectra, Normal Coordinate Analysis of the ReS₄-Ion

The preparation and properties of tetrathioperrhenates $M^{I}ReS_{4}$ ($M^{I} = (C_{6}H_{5})_{4}As$, $(C_{6}H_{5})_{4}P$, (CH₃)₄N) are described. The measured vibrational- and electronic spectra are discussed in terms of the bond properties. For the ReS_{4}^{-} ion a normal coordinate treatment is reported. From X-ray studies it could be derived that the tetraphenylarsonium salt (a = 13.14 Å, c = 7.11 Å) and the tetraphenylphosphonium salt (a = 12.94 Å, c = 7.20 Å) are crystallising tetragonal with Z = 2 probably in the space group S_{4}^{2} - $I\overline{4}$.

I. Zur Darstellung

Über Versuche zur Darstellung von Tetrathioperrhenaten ist schon verschiedentlich berichtet worden. Die ersten Untersuchungen über die Reaktionen des ReO_4^- -Ions mit Schwefelwasserstoff in wäßriger Lösung stammen von *Feit*¹⁾. Das von ihm und später von *Rudnev* und *Malofeeva*²⁾ beschriebene TIReS₄erwies sich jedoch aufgrund von spektroskopischen Untersuchungen von *Müller* und *Krebs*³⁾ als ein stöchiometrisches

¹⁾ W. Feit, Z. anorg. allg. Chem. 199, 262 (1931); Z. angew. Chem. 44, 65 (1931).

²⁾ N. A. Rudnev und G. I. Malofeeva, Russ. J. Inorg. Chem. 6, 1215 (1961).

³⁾ A. Müller und B. Krebs, Naturwissenschaften 53, 178 (1966).

. . .

Gemisch von Rheniumheptasulfid und Thalliumsulfid. *Briscoe* et al.⁴⁾ diskutierten die Bildung von KReS₄ in Lösung beim Einleiten von H₂S in eine KReO₄-Lösung.

Später konnte von uns der Nachweis geführt werden, daß sich unter definierten Bedingungen bei der Reaktion des Perrhenat-Ions mit Schwefelwasserstoff das instabile Tetrathioperrhenat-Ion bildet⁵⁾. Uns ist es jetzt gelungen, nach einfachen Vorschriften kristalline Tetrathioperrhenate darzustellen.

Leitet man in eine stark verdünnte Lösung von Rheniumheptoxid in 25 proz. NH₃-Lösung Schwefelwasserstoff ein, so färbt sie sich über Gelb und Rot nach Tiefviolett unter gleichzeitiger Abscheidung eines schwarzen Festkörpers. Dieser kann jedoch durch Zusatz von festem Kaliumhydroxid und Kochen der Lösung unmittelbar nach dem Ausfallen wieder gelöst werden. Die so erhaltene tiefviolette Lösung enthält gemäß

entstandenes Tetrathioperrhenat, das aus dem siedenden Gemisch als Tetraphenylarsonium- (1a), Tetraphenylphosphonium- (1b) oder Tetramethylammoniumsalz (1c) durch Zusatz der entsprechenden Kation-Lösungen isoliert werden kann.

1a, 1b und 1c sind tiefviolette bis schwarze feinkristalline Festkörper, die an der Luft stabil sind. Alle Salze sind in Wasser und Äther praktisch unlöslich. 1a und 1b lösen sich mäßig mit violetter Farbe in Chloroform, Nitromethan und Aceton, 1c in Alkohol. Die Lösungen zersetzen sich innerhalb einiger Stunden unter Abscheidung eines schwarzen Niederschlages.

II. Elektronenabsorptionsspektrum

Das an einer alkoholischen Lösung von 1c vermessene Elektronenspektrum zeigt im Bereich von 12000-50000/cm drei starke Absorptionsbanden. Die aus Tab. 1 hervorgehenden Absorptionsfrequenzen stimmen im wesentlichen mit denen überein, die früher von uns an einem Reaktionsgemisch gemessen wurden⁵.

Tab. I. Bandenlagen im Elektronenspektrum von ReO_4^- (vgl. l. c.⁶) und ReS_4^- (1) in cm⁻¹; Extinktionskoeffizienten ϵ in $l \cdot \text{Mol}^{-1} \cdot \text{cm}^{-1}$ und Oszillatorenstärke f. Die Spektren wurden mit einem Beckman-DK-2-Gerät aufgenommen

	v_1	v_2	<i>v</i> ₃	
ReO ₄ -	$\begin{array}{c} 44050\\ \epsilon=3.66\cdot10^3\end{array}$	$\begin{array}{r} 49500\\ \epsilon=6.09\cdot10^3\end{array}$		
ReS_4^-	19800 $\varepsilon = 9.6 \cdot 10^3$ f = 0.07	$32050 \ \epsilon = 1.8 \cdot 10^4 \ f = 0.17$	$\begin{array}{c} 44000\\ \epsilon \approx 3\cdot 10^4 \end{array}$	

4) H. V. A. Briscoe, P. L. Robinson und E. M. Stoddart, J. chem. Soc. [London] 1931, 1439.

⁵⁾ A. Müller, B. Krebs und E. Diemann, Z. anorg. allg. Chem. 353, 259 (1967).

⁶⁾ P. Mullen, K. Schwochau und C. K. Jørgensen, Chem. Phys. Letters 3, 50 (1969).

Abbild. 1. Elektronenspektrum von ReS₄⁻⁻ (1) im Bereich von 15000-45000/cm, aufgenommen an einer alkoholischen Lösung von 1c

Abbild. 1 zeigt das Elektronenspektrum von 1, das für ein Ion mit T_d -Symmetrie charakteristisch ist. Der längstwellige Übergang v_1 läßt sich in einem vereinfachten MO-Schema (vgl. 1. c.^{5,7}) einem Übergang $t_1 \rightarrow 2e$ (${}^{1}A_{1} \rightarrow {}^{1}T_{2}$) zuordnen, also cinem charge transfer-Übergang von der am Schwefel zentrierten MO t_1 zu der im wesentlichen am Rhenium lokalisierten MO 2e. Man sollte erwarten, daß die Differenz der längstwelligen Übergänge v_1 im ReO₄⁻ und im ReS₄⁻ (1) etwa gleich der Differenz der Ionisierungsenergien von Sauerstoff und Schwefel (26300/cm) ist. Dies ist, wie aus Tab. 1 ersichtlich, tatsächlich annähernd der Fall. — Über die Zuordnung von v_2 ($t_1 \rightarrow 3t_2$ oder $2t_2 \rightarrow 2e$ (${}^{1}A_1 \rightarrow {}^{1}T_2$)) bestehen noch Kontroversen in der Literatur (vgl. 1. c.⁷). Wahrscheinlich handelt es sich aber bei v_2 um einen $2t_2 \rightarrow 2e$ -Übergang.

Aus den hohen Extinktionskoeffizienten kann gemäß einer Regel von *Ballhausen* und *Liehr*⁸⁾ geschlossen werden, daß in 1 eine Stabilisierung von 1e entsprechend relativ starken π -Bindungen vorliegt.

III. Schwingungsspektren, Kraftkonstanten und mittlere Schwingungsamplituden des ReS₄⁻-Ions

Die IR- und Raman-spektroskopisch ermittelten Schwingungsfrequenzen des Anions 1 in 1a, 1b und 1c gehen aus Tab. 2 hervor. Die IR-Spektren von 1b und 1c sowie das Raman-Spektrum von 1b sind aus Abbild. 2 zu ersehen.

⁷⁾ A. Müller, W. Rittner und G. Nagarajan, Z. physik. Chem. NF 54, 229 (1967).

⁸⁾ C. J. Ballhausen und A. D. Liehr, J. molecular Spectroscopy 2, 342 (1958), 4, 190 (1960).

Abbild. 2. IR-Spektren von $(C_6H_5)_4PReS_4$ (1b) und $(CH_3)_4NReS_4$ (1c) sowie das Raman-Spektrum von 1b im Bereich von 550-190/cm. Mit (\times) sind Schwingungsfrequenzen des Kations bezeichnet

Tab. 2. Innere Schwingungen von $\text{ReS}_4^{-1}(1)$ in cm⁻¹⁹

		$v_1(\mathbf{A}_1)$	$v_2(\mathbf{E})$	$v_3(\mathbf{F}_2)$	$v_4(F_2)$
(C ₆ H ₅) ₄ AsReS ₄ (1a)	IR, Nujol		a)	487 (st)	a)
(C ₆ H ₅) ₄ PReS ₄ (1b)	IR, Nujol Ra, fest	501 (st)	200 (s) b)	488 (st) a)	200 (s) b)
(CH ₃) ₄ NReS ₄ (1c)	IR, Nujol	500 (s)	a)	483 (st)	a)

s = schwach, st - stark.

a) Wegen zu geringer Intensität nicht beobachtet.

b) Wegen zu starker Absorption nicht beobachtet.

Interessant ist, daß $v_1(A_1)$ in **1a** und **1b** nicht beobachtbar ist, während es in **1c** auftritt. Dies läßt sich eindeutig mit einer Site-Gruppenanalyse deuten. Die Korrelation zwischen den Rassen des freien Ions mit T_d -Symmetrie und den Rassen der Untergruppe S₄ (1 besitzt in **1a** und **1b** die Site-Symmetrie S₄) ergibt sich wie folgt:

$v_1: A_1(R)$	·>	A(R)
v_2 : E(R)		E(IR, R)
$v_3, v_4 : F_2(IR, R)$		B(lR) E(lR, R)
T _d	ج در آب	Site-Symmetrie S ₄

⁹⁾ Die IR-Spektren wurden mit einem Gerät der Fa. Leitz (4000--400/cm) und einem Beckman-IR-11-Gerät sowie einem Spektrographen Perkin-Elmer 225 vermessen. Für die Möglichkeit an letzterem Gerät zu messen, danken wir Herrn Professor Dr. W. Lüttke, Göttingen. Das Raman-Spektrum wurde mit einem Coderg-Spektrographen aufgenommen.

Hieraus folgt eindeutig, daß v_1 auch durch Kristallfeldeffekte in **1a** und **1b** nicht IRaktiv wird. Im Salz **1c** wird v_1 dagegen im IR beobachtet. Daraus kann man schließen, daß in **1c** das Rhenium auf einer Punktlage der Symmetrie C_{2v}, C₃, C₂ oder C_s liegen muß (Untergruppen von T_d, bei denen die A₁ entsprechende Rasse eine IR-aktive Schwingung besitzt). Hinsichtlich der Aufspaltung der F₂-Schwingungen bei **1a** und **1b** versagt allerdings die Site-Symmetriebetrachtung.

Bevor uns die Aufnahme des Raman-Spektrums von 1b gelang, was wegen der tiefen Farbe Schwierigkeiten verursacht, haben wir v_1 mit den Näherungsgleichungen von *Cotton* und *Wing*¹⁰⁾ aus v_3 und $f_{\text{ReS/ReS}} = f_{\text{rr}}$ abgeschätzt. Wir fanden die Gesetzmäßigkeit, daß das Verhältnis $f_{\text{rr}}/f_{\text{r}}$ von Chalkogenometallat-Anionen für homologe Reihen annähernd konstant ist (Tab. 3).

	fr	f _{rr}	$f_{\rm rr}/f_{\rm r}$	Lit.
VO ₄ 3-	4.59	0.60	0.13	11)
$VS_{4^{3-}}$	2.30	0.26	0.11	11)
CrO ₄ 2	5.58	0.41	0.074	11)
MoO ₄ 2-	5.87	0.55	0.093	11)
MoS ₄ 2-	3.24	0.25	0.077	11)
MoSe ₄ ²	2.51	0.17	0.068	12)
WO ₄ 2-	6.42	0.58	0.090	11)
WS4 ²⁻	3.57	0.28	0.078	11)
WSe₄ ²	2.94	0.22	0.075	12)
MnO ₄	5.84	0.29	0.050	11)
TcO ₄	6.77	0.36	0.053	11)
ReO ₄	7.55	0.44	0.058	11)
$ReS_{4}^{-}(1)$	(3.84)	(0.21)	(0.054)	vgl. Text

Tab. 3. Kraftkonstanten f_r , f_{rr} in mdyn/Å und das Verhältnis f_{rr}/f_r verschiedener Chalkogeno-Anionen

Es ergab sich für 1 ein geschätzter Wert von $f_{rr}/f_r = 0.054$. Mit diesem Wert erhielten wir $v_1(A_1) \approx 490$ /cm in guter Übereinstimmung mit dem experimentellen Befund. Der Zusammenhang zwischen dem Verhältnis f_{rr}/f_r und der Ionenladung der Anionen ist physikalisch interessant. Es zeigt sich, daß das Verhältnis mit abnehmender Ionenladung ebenfalls abnimmt. Die Interpretation läßt sich ähnlich geben wie früher bereits durch *Müller* et al. für die U.B.F.F.-Kraftkonstante $F^{13, 14}$.

Interessant ist weiterhin, daß in $v_1 > v_3$ ist und daß in der Reihe MnO₄⁻, TcO₄⁻, ReS₄⁻⁻, ReO₄⁻⁻ ein eindeutiger Zusammenhang zwischen v_1/v_3 und dem Massenverhältnis m_X/m_Y besteht, wobei mit zunehmendem $m_X/m_Y v_1/v_3$ ebenfalls zunimmt (Abbild. 3). Entsprechendes wurde für die Chalkogeno-Anionen des Chroms, Molybdäns und Wolframs gefunden. Die physikalische Interpretation hierzu ist von uns gegeben worden ^{13,14}).

¹⁰⁾ F. A. Cotton und R. M. Wing, Inorg. Chem. 4, 867 (1965).

¹¹⁾ A. Müller und B. Krebs, J. molecular Spectroscopy 24, 180 (1967).

¹²⁾ A. Müller, B. Krebs, R. Kebabcioglu, M. Stockburger und O. Glemser, Spectrochim. Acta [London] 24A, 1831 (1968).

¹³⁾ A. Müller, E. J. Baran und P. J. Aymonino, Anales Asoc. Quim. Arg. 56, 85 (1968).

¹⁴⁾ B. Krebs und A. Müller, Z. Chem. 7, 243 (1967).

Zur Normalkoordinatenanalyse wurden die in Tab. 4 aufgeführten Frequenzen zugrunde gelegt.

Tab. 4. Schwingungsfrequenzen des ReS_4 -Ions (1) in cm⁻¹

$v_1(\mathbf{A}_1)$	$v_{\rm s}({\rm ReS})$	501	
$v_2(E)$	$\delta_{s}(\text{ReS}_{2})$	$(200)^{a}$	
$\nu_3(F_2)$	$v_{\rm as}({\rm ReS})$	486	
$v_4(F_2)$	$\delta_{as}(\text{ReS}_2)$	200	

a) Wie üblich angenommen (vgl. l. c. 15)).

Wir haben im vorliegenden Fall folgende Modelle zur Kraftkonstantenberechnung benutzt: das U.B.F.F., das M.V.F.F. mit einer diagonalen *F*-Matrix, die *L*-Matrix-Näherung¹⁶⁾ und das P.E.D.-Verfahren¹⁷⁾. Die *F*- und *G*-Matrizen sind z. B. bei¹⁸⁾ aufgeführt. Die Kraftkonstanten sind der Tab. 5 zu entnehmen.

Es ergibt sich, daß die Kraftkonstanten nach der L-Matrixmethode gut mit denen, die nach dem M.V.F.F. und der P.E.D.-Methode berechnet wurden, übereinstimmen. K ist erwartungsgemäß kleiner als f_{ReS} . Ein Vergleich der Kraftkonstanten von 1 mit denen des isoelektronischen WS₄²⁻-lons (vgl. l. c.¹¹) ergibt:

	∫ _{ReS}	>	fws	(1)
	$K_{(\text{ReS}_4^-)}$	>	$K_{(WS_4^{2-})}$	(2)
und	$F_{(\text{ReS}_4^-)}$	\approx	$F_{(WS_4^{2-})}$	(3)

¹⁵⁾ A. Müller, B. Krebs, W. Rittner und M. Stockburger, Ber. Bunsenges. physik. Chem. 71, 182 (1967).

A. Müller, Z. physik. Chem. [Leipzig] 238, 116 (1968); C. J. Peacock und A. Müller, J. molecular Spectroscopy 30, 338 (1969).

¹⁷⁾ H. J. Becher und K. Ballein, Z. physik. Chem. NF 54, 302 (1967).

¹⁸⁾ Vgl. l. c.¹¹⁾ und B. Krebs, A. Müller und A. Fadini, J. molecular Spectroscopy 24, 198 (1967).

20	<u>1</u> 7
29	07

	M.V.F.F.	$L_{12} = 0$	P.E.D.	U.B.F.F.		
∫ReS	3.85	3.94	3.91	3.26	K	
$f_{\rm ReS/ReS}$	0.29	0.27	0.28	0.37	F	
J SReS	0.28	a)	a)	0.12	H	
$f_{SReS/SReS}$	0.01	a)	a)	-0.02	F'	

Tab. 5. Kraftkonstanten des ReS₄⁻⁻-Ions in mdyn/Å

a) Diese Werte lassen sich aus den fünf Symmetriekraftkonstanten nicht ausrechnen.

Zur Deutung von (1) und (2) vgl. l. c. ¹⁹). Es handelt sich hier um eine allgemeine Gesetzmäßigkeit, daß in isoelektronischen Ionen die Valenzkraftkonstante mit abnehmender negativer Ladung zunimmt.

Die Valenzkraftkonstante in 1 ist etwa so groß wie f_{ReS} im ReO₃S⁻-Ion (vgl. l. c. ²⁰), so daß hinsichtlich der π -Bindungsverhältnisse der ReS-Bindung das gleiche gilt wie für das ReO₃S⁻-Ion²¹). Der Bindungsgrad nach *Siebert*²²) ergibt sich für 1 zu $N = 1.9_5$.

Die *L*-Matrixelemente und die Potentialenergieverteilung gehen aus den Tabb. 6 und 7 hervor (vgl. l. c. 18, 23).

	M.V.F.F.	$L_{12} = 0$	P.E.D.	U. B.F .F.	
L ₃₃	0.196	0.196	0.196	0.196	
L_{34}	0.010	0.000	0.005	-0.013	
L_{43}	-0.088	0.073	0.080	-0.054	
L ₄₄	0.289	0.291	0.297	0.291	

Tab. 6. L-Matrixelemente für F_2 in a.m.u. $\neg y_2$

Tab. 7. Potentialenergieverteilung für M.V.F.F. und U.B.F.F. (vgl. l. c. 19)

	∫ _{ReS}	f _{ReS/ReS}	f _{SReS}	fsres/sres	K	F	H	F'
ν_1	0.81	0.19	0.00	0.00	0.69	0.31	0.00	0.00
ν_2	0.00	0.00	1.11	-0.11	0.00	0.49	0.48	0.03
1'3	1.07	0.08	0.01	0.00	0.90	0.10	0.00	0.00
v_4	0.02	0.00	0.98	0.00	0.02	0.39	0.45	0.14

Aus den L-Matrixelementen und den verschiedenen Darstellungen der Potentialenergieverteilung folgt die hohe Charakteristik von v_3 und v_4 . Bei allen Modellen hat L_{34} erwartungsgemäß nach *Müller* (l. c. ¹⁶) einen sehr kleinen Wert. Für L_{12} =O liegt eine völlig charakteristische v_4 -Schwingung vor (vgl. Tab. 8).

Chemische Berichte Jahrg, 103

¹⁹⁾ A. Müller und B. Krebs, Spectrochim. Acta [London] 23A, 1591 (1967).

²⁰⁾ A. Müller, B. Krebs und W. Höltje, Spectrochim. Acta [London] 23A, 2753 (1967).

²¹⁾ A. Müller und B. Krebs, Z. anorg. allg. Chem. 342, 182 (1966).

²²⁾ H. Siebert, Z. anorg. allg. Chem. 275, 225 (1954).

²³⁾ C. J. Peacock und A. Müller, Z. Naturforsch. 23a, 1029 (1968).

		v_3			1'4	
	V_{11}	V ₂₂	V ₃₃	V_{11}	V_{22}	V ₃₃
M.V.F.F.	98.5	0.0	1.5	1.5	-0.1	98.6
P.E.D.	100.0	-1.3	1.3	0.3	0.6	99.1
$L_{12} = 0$	101.1	2.2	1.0	0.0	0.0	100.0

Tab. 8. Potentialenergieverteilung (vgl. l. c.²³⁾)

Weiterhin haben wir mittlere Schwingungsamplituden für 1 nach verschiedenen Modellen berechnet. Die mittleren Amplituden wurden entweder aus den L-Matrixelementen, und zwar nach folgenden Gleichungen

$$u_{\text{Re}-\text{S}}^2 = \frac{1}{4} G_{11}\Delta_1 + \frac{3}{4} L_{33}^2 \Delta_3 + \frac{3}{4} L_{34}^2 \Delta_4$$
$$u_{\text{S}...\text{S}}^2 = \frac{2}{3} G_{11}\Delta_1 + \frac{1}{9} G_{22}\Delta_2 + \frac{1}{6} (2L_{33} + L_{43})^2 \Delta_3 + \frac{1}{6} (2L_{34} + L_{44})^2 \Delta_4$$

mit

$$\Delta_{\rm i} = \frac{h}{8\pi^2 v_{\rm i}} \quad \text{coth} \quad \frac{hv_{\rm i}}{2kT}$$

bzw. aus den Σ -Matrixelementen, die von *Müller* et al.¹⁶⁾ für L_{12} =O abgeleitet worden sind, berechnet. Hierbei ergeben sich folgende Formeln

$$u_{\text{Re}-\text{S}}^2 = \frac{1}{4} \sum_{11} (A_1) + 3 \sum_{11} (F_2)$$
$$u_{\text{S}...\text{S}}^2 = \frac{1}{3} [2 \sum_{11} (A_1) + \frac{1}{3} \sum_{11} (E) + 2 \sum_{11} (F_2) + \frac{1}{2} \sum_{22} (F_2) + 2 \sum_{12} (F_2)]$$

mit

$$\begin{split} \Sigma_{\rm ii}(A_1, E) &= \Delta_{\rm i} G_{\rm ii} \\ \Sigma_{11}(F_2) &= -\Delta_3 G_{33} \\ \Sigma_{12}(F_2) &= -\Delta_3 G_{34} \\ \Sigma_{22}(F_2) &= \frac{\Delta_4 \det G + \Delta_3 G_{34}^2}{G_{33}} - \end{split}$$

Nähere Einzelheiten über die Berechnung von mittleren Schwingungsamplituden mögen der Monographie von *Cyvin*²⁴⁾ entnommen werden.

Die Rechnungen ergeben, daß man praktisch mit allen Modellen (U.B.F.F., M.V.F.F., L_{12} =O und P.E.D.) gleiche mittlere Schwingungsamplituden erhält, und zwar (für 298°K) mit L_{12} =O:

$$u_{\text{ReS}} = 0.0391 \text{ Å}$$

 $u_{\text{S}...\text{S}} = 0.079 \text{ Å}$

Die Werte sind ähnlich wie in den Ionen MoS_4^{2-1} und WS_4^{2-15} , der Re-S-Wert ist so groß wie im ReO₃S^{-15, 25)}.

²⁴⁾ S. J. Cyvin, Mean Square Amplitudes and Molecular Vibrations Universitetsforlaget, Oslo 1968.

²⁵⁾ A. Müller, B. Krebs, A. Fadini, O. Glemser, S. J. Cyvin, J. Brunvoll, B. N. Cyvin, I. Elvebredd, G. Hagen und B. Vizi, Z. Naturforsch. 23a, 1656 (1968).

IV. Röntgenographische Untersuchung

Die Salze 1a, 1b und 1c wurden weiterhin röntgenographisch charakterisiert. Die Pulverdiagramme dieser Salze gehen aus den Tabb. 9, 10 und 11 hervor. Gemessen wurde in einer Debye-Scherrer-Kamera (r = 114.6 mm) unter Verwendung von Cu_{Ka}-Strahlung. Zur Filmeichung diente NaCl als innerer Standard.

Die Pulveraufnahmen von 1a und 1b ließen sich tetragonal indizieren, die entsprechenden röntgenographischen Daten sind in Tab. 12 zusammengestellt. Von 1b, das in tetragonalen Säulen mit (110) als Begrenzungsflächen kristallisiert, haben wir außerdem Einkristallaufnahmen (Drehkristall-, Weißenberg- und Precessionaufnahmen) gemessen. Aus den systematischen Auslöschungen von 1a und 1b (hkl nur mit h + k + l = 2n vorhanden) folgt eine innenzentrierte Struktur. Die röntgenographische Dichte stimmt mit dem experimentellen Wert für Z = 2 gut überein, ebenso das aus den röntgenographischen Daten bestimmte Molvolumen mit dem aus der experimentellen Dichte berechneten Molvolumen sowie dem nach *Biltz*²⁶⁾ aus Volumeninkrementen abgeschätzten Wert²⁷⁾.

sin ²	sin ² ⁹ ber.	Intensität	d [Å]	hkł	
0.0135	0.0138	st	6.64	200	
0.0150	0.0152	st	6.30	101	
0.0286	0.0290	st	4.56	211	
0.0428	0.0427	m	3.72	301	
0.0701	0.0702	m	2.91	411	
0.0814	0.0815	m	2.70	312	
0.0978	0.0979 0.0979	S	2.47	431 501	
0.1099	0.1093 0.1100	s	2.32	103 440	
0.1232	0.1232 0.1239	\$	2.20	213 600	
0.1397	0.1391	m	2.06	611	
0.1492	0.1507	m	1.996	323	
0.1641	0.1644 0.1641	m	1.903	413 532	
0.1925	0.1921 0.1921	s	1.757	433 503	
0.2050	0.2056	\$	1.703	523	

Tab. 9. Pulverdiagramm von $(C_6H_5)_4AsReS_4$ (1a)

st = stark, m = mittel, s = schwach.

26) W. Biltz, Raumchemie fester Stoffe, Leipzig 1932.

27) Die Volumeninkremente für (C₆H₅)₄As⁺ (= 290 cm³/Mol) und (C₆H₅)₄P⁺ (= 264 cm³/Mol) wurden aus den bei *Donnay*²⁸ aufgeführten experimentellen Dichten verschiedener Salze nach der Methode von *Biltz*²⁶ als Mittelwerte bestimmt. Zur Abschätzung der Molvolumina in Tab. 12 wurden für Re⁺⁷ = 0 cm³/Mol und S⁻² = 22 cm³/Mol zugrunde gelegt.

28) J. D. H. Donnay (Hrsg.), Crystal Data ACA Monograph No. 5, Washington 1963.

 sin ² t _{gem} .	sin ² _{ber.}	Intensität	d [Å]	hkl	
 0.0070	0.0071	st	9.21	110	
0.0142	0.0142	st	6.46	200	
0.0150	0.0150	st	6.28	101	
0.0290	0.0284	st	4.53	220	
0.0351	0.0355	m	4.10	310	
0.0432	0.0434	m	3.71	301	
0.0457	0.0458	s	3.61	002	
0.0533	0.0529	S	3.36	112	
0.0569	0.0567	st	3.23	400	
0.0603	0.0600	m	3.14	202	
0.0713	0,0709	st	2.88	420	
0.0816	0.0813	s	2.70	312	
0.0921	0.0922	s	2.54	510	
0.1001	0.1001	s	2.44	501/431	
0.1139	0.1135	S	2.28	440	
0.1205	0.1206	s	2.22	530	
0.1373	0.1379	s	2.08	512	
0.1425	0.1418	s	2.04	620	
0.1656	0.1664	s	1.895	532	
0.1922	0.1918	s	1.759	503/433	
0.1991	0.1994	S	1.728	721	
0.2061	0.2057	5	1.698	730	
0.2248	0.2269	s	1.626	800	
0.2410	0.2411	S	1.571	820	

Tab. 10. Pulverdiagramm von (C₆H₅)₄PReS₄ (1b)

Tab. 11. Pulveraufnahme von $(CH_3)_4NReS_4$ (1c)

2θ _{gem} .	sin ² ϑ	Intensität	d [Å]	
 12.85	0.0125	st	6.90	
13.85	0.0145	st	6.40	
15.30	0.0177	m	5.79	
16.85	0.0214	st	5.26	
18.85	0.0268	st	4.71	
23.65	0.0419	S	3.76	
24.65	0.0455	st	3.61	
25.80	0.0499	m	3.45	
29.75	0.0659	m	3.00	
30.80	0.0705	S	2.90	
34.00	0.0855	S	2.64	
34.95	0.0901	S	2.57	
36.00	0.0952	m	2.49	
40.60	0.1205	s	2.22	
41.10	0.1233	S	2.20	
42.80	0.1330	s	2.11	
43.75	0.1388	S	2.07	
48.20	0.1669	s	1.888	
50.30	0.1806	s	1.814	
52.30	0.1941	S	1.750	
53.90	0.2054	m	1.701	
58.25	0.2369	s	1.584	
62.00	0.2651	s	1.497	

st - stark, m = mittel, s = schwach,

Eine sinnvolle Besetzung der Punktlagen ergibt sich für die wahrscheinlich zugrunde liegende Raumgruppe $S_4^2 - I\overline{4}$ (Nr. 82) mit

C: 8 g 1
S: 8 g 1
Re: 2 c
$$\overline{4}$$

P bzw. As: 2 a $\overline{4}$

Beim Tetramethylammoniumsalz 1c gelang eine eindeutige Indizierung der Pulveraufnahme nicht.

	$(C_6H_5)_4AsReS_4$ (1a)	$(C_6H_5)_4PReS_4$ (1 b)	
a	13.14	12.94	Å
с	7.11	7.20	Å
V	1225.9	1206.6	Å3
Z	2	2	
d _{röntgenogr} ,	1.89	1.80	g/cm ³
d_{exp}^{29}	1.86	1.81	g/cm ³
MVröntgeno	gr. 369.2	363.4	cm ³ /Mol
MV _{exp.}	375.2	361.2	cm ³ /Mol
MV (n. Bill	$(z) \sim 378$	~352	cm ³ /Mol

Tab. 12.	Röntgenographische	Daten von 1	la und 1b
----------	--------------------	-------------	-----------

Wir danken Herrn Professor Dr. O. Glemser für die Bereitstellung von Institutsmitteln, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für Sachbeihilfen. Der Fa. Degussa (Hanau) gilt unser Dank für die Überlassung von Rheniumheptoxid.

Beschreibung der Versuche

a) Tetrathiorhenat (VII)-Ion (1): In eine heiße Lösung von 200 mg Re_2O_7 in 200 ccm 25 proz. Ammoniaklösung wird in kräftigem Strom Schwefelwasserstoff eingeleitet. Das Gemisch färbt sich langsam über Gelb und Rot nach Violett unter gleichzeitiger Abscheidung eines schwarzen Niederschlages. Das Einleiten von H₂S wird abgebrochen, 2 g Kaliumhydroxid zugesetzt, das Gemisch etwa 10 Min. aufgekocht und heiß filtriert. Das heiße Filtrat enthält tiefviolettes 1, das sich beim Abkühlen zersetzt.

b) Tetraphenylarsonium-tetrathiorhenat(VII) (1a): Eine siedende Lösung von 1 wird tropfenweise mit 10 ccm einer 5 proz. wäßr. Lösung von Tetraphenylarsoniumchlorid versetzt. Es fällt ein rotvioletter Niederschlag, der heiß filtriert und sorgfältig mit heißem Wasser gewaschen wird. Nach Trocknen i. Vak. über P_4O_{10} wird aus heißem Nitromethan umkristallisiert. Man erhält feinkristallines tiefviolettes 1a. Ausb. ca. 75%.

 $C_{24}H_{20}AsReS_4$ (697.8) Ber. C 41.31 H 2.89 S 18.38 Gef. C 41.2 H 2.9 S 18.5

c) Tetraphenylphosphonium-tetrathiorhenat(VII) (1b): Die Fällung erfolgt mit 30 ccm 5 proz. Tetraphenylphosphoniumchlorid-Lösung wie unter b). Ausb. ca. 80 %.

C₂₄H₂₀PReS₄ (653.9) Ber. C 44.08 H 3.08 S 19.62 Gef. C 43.7 H 2.6 S 19.8

d) Tetramethylammonium-tetrathiorhenat(VII) (1c): Die Fällung erfolgt wie unter b) mit 20 ccm 10proz. Tetramethylammoniumchlorid-Lösung. Das rohe 1c wird aus Äthanol umkristallisiert. Ausb. ca. 45%.

 $\begin{array}{c} C_{4}H_{12}NReS_{4} \ (388.6) & \text{Ber. C } 12.36 \ H \ 3.11 \ N \ 3.61 \ S \ 33.00 \\ & \text{Gef. C } 12.2 \ H \ 3.0 \ N \ 3.6 \ S \ 33.2 \end{array}$

²⁹⁾ Die Dichten wurden mit der "Schwebemethode" in [HgJ₄]²⁻-Lösung bestimmt. [165/70]